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Abstract. Twist-storing polymers respond with elastic energy penalty to coherent or random twisting
along the local chain axis away from its equilibrium, which can be straight (as in “ribbons”) or helical (as
in DNA and other biopolymers). Here we study the equilibrium conformation of such polymers, focusing
on the thermodynamic balance between twist and writhe, resulting from the competition between the
random coil entropy and the potential energy stored in superhelical portions of the polymer chain. Two
macroscopic variables characterise such a chain, the end-to-end distance R and the link number Lk, which
is a topological invariant of a given polymer with clamped ends. We find that with increasing link number
Lk, the chain accommodates its excess twist in growing plectonemes, unless forced out of this state by
stretching its end-to-end distance R. We calculate the force–extension relation, which exhibits crossovers
between different deformation regimes.

PACS. 87.15.-v Biomolecules: structure and physical properties – 61.41.+e Polymers, elastomers, and
plastics – 36.20.Ey Conformation (statistics and dynamics)

1 Introduction

Conformation and physical properties of biopolymers at-
tract a high level of attention from a variety of classical
physics fields. The motivation, apart from an appealing
contact with life sciences, is that this class of polymers
presents new challenges for theoretical and experimental
physics. First, a large body of theoretical work provides
a deep insight into the physical behaviour of single poly-
mers and entangled and crosslinked polymer networks by
applying statistical mechanics to simple mechanical poly-
mer models, reflecting some key features of a system and
neglecting a large number of irrelevant complexities. Sec-
ondly, recent advances in experimental techniques made
it possible to observe single molecules, in particular DNA
and polypeptides, and to measure their individual me-
chanical properties [1–3]. Thirdly, experimental as well
as theoretical physics of biopolymers, as well as of other
twist-storing line objects, provides a playground for topol-
ogy and knot theory.

There are a variety of different models to explain the
physical behaviour of long chain polymers, starting from
the simplest random walk, where the polymer path is mod-
elled by a sequence of uncorrelated steps in space (see [4]
for key examples). For polymers of simple chemical struc-
ture or for very long chains, this model is appropriate, pro-
viding an adequate description of basic properties. More
complex polymers exhibit a certain bending stiffness that
preserves the direction of the polymer over a persistence
length A. This leads to the classical model of inextensi-
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ble semiflexible polymer or worm-like chain [5–8]. Many
investigations have been carried out on this model, but
we will refer later to the recent work of Thirumalai et al.
[9], which provides a closed expression for the free energy
of a worm-like chain spanning the full range of end-to-
end distance R variation. The worm-like chain model is,
again, well adapted to only a certain class of polymers.
For instance, it assumes that the stiffness of the chain is
equally strong in all directions. Ribbon or sheet-like poly-
mers, however, are easy to bend in one direction, but hard
to deform in the perpendicular direction (see e.g. [10]).
To avoid additional complications, we restrict ourselves in
this article only to polymers with an isotropic chain cross
section having a single persistence length A.

The models mentioned so far describe a polymer as an
essentially one-dimensional line with, perhaps, isotropic
or anisotropic bending modulus. But many polymers, as
for example DNA and polypeptides, can resist an external
torque and change their local and global configuration on
imposed twisting, i.e. on rotation of one chain end around
its central axis, while the other end is fixed. Such poly-
mer chains are called twist-storing, in contrast to more
simple systems that could freely unwind the twist. One
can visualise this behaviour by twisting a rope or a rub-
ber tube and observing the appearance of double-helical,
interwound structures, called plectonemes, see Figure 1.
The most familiar example is, of course, the telephone
cord forming interwound helices as the receiver is rotated
and placed back on the phone. These structures and their
stability have been investigated within the framework of
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Fig. 1. A macroscopic plectoneme formed by a twisted rubber
tube. The image also defines the parameters used in the theory:
the plectoneme radius r, the pitch rate p and the angle γ, which
the winding strands make with the plectoneme axis.

solid mechanics and elasticity theory, see for example the
most recent work reported in [11–14].

Experiments on single DNA molecules have recently
received a lot of attention [1–3,15] and prompted theoret-
ical work on the behaviour of twist-storing DNA [16–18].
Some of this work deals with particular features of DNA,
like denaturated states, characterised by separation of the
two linear strands that make up the famous DNA dou-
ble helix. In this article, we develop a mechanical model
that applies to polypeptides and DNA, but also describes
a wider class of semiflexible polymers with an added local
twist rigidity. We combine the classical polymer statisti-
cal mechanics [9] with mean field arguments similar to
the method used by Marko [16], and refer to the topolog-
ical theory of link number illustrated by Fuller [19]. Our
work is inspired by the work of Marko and Siggia [16,17]
and arrives at similar results and conclusions. Their in-
vestigations focus on the behaviour of DNA superstruc-
ture by calculating the balance of segments accommo-
dated in solenoidal and plectonemic segments. In contrast
to their work, our model is an investigation on a more ba-
sic level: the competition between elastic effects favouring
plectonemes and entropic free energy favouring random
walk configurations. Our results for the force-extension
relation are also very close to the numerical study [14],
where the Fixman-Kovak model of random coil [8] has
been employed.

This article describes the model of a twist-storing poly-
mer chain that finds an equilibrium between the enthalpic
plectoneme regions and entropy-dominated worm-like ran-
dom coil portions. Section 2 gives the general solution
scheme. Numerical results and the interpretation for the
case of a single twist-storing chain are given in Section 3,
where we also discuss limiting cases and analytical expres-
sions for the mechanical response in certain characteristic
regimes of deformation.

2 Model

In classical polymer theories, as the random walk model
or the Gaussian chain approximation [4], the path traced
by the chain in space is analogous to a diffusive process
in time. The directions of two adjacent segments are not
correlated in these simple models. One can derive simple
diffusion laws like 〈R2〉 ∝ L, where R is the end-to-end
distance and L the total arc length of the polymer, or
F ∝ R2, where F is the chain free energy at a fixed R.
In a more realistic approach, addressing polymers with
an internal bending rigidity of their bonds, one intro-
duces a persistence or correlation length, A, over which
the polymer preserves its direction [6–8] (inelastic semi-
flexible polymer, or worm-like chain). This is equivalent
to introducing an energy penalty associated with any de-
formation away from the zero-temperature ground state,
which is a straight line in this case. The elastic bending
energy of a polymer of length L and arc length parametri-
sation s can be written as:

βHb =
∫ L

0

A

2
κ2(s)ds =

∫ L

0

A

2

∣∣∣∣∂2r
∂s2

∣∣∣∣2 ds, (1)

where κ(s) is the local curvature of the path r(s) and
β = 1/kBT with kB the Boltzmann constant and T the
temperature. This model can be further generalised to ac-
count for anisotropy of the bending energy (the case of
“ribbons” and “belts”, see for example [10]). Here we re-
strict ourselves to the uniaxial case, assuming the chain is
equally rigid in response to bending in any direction away
from its local tangent vector t(s) = ∂r/∂s, t2(s) = 1. In
making this assumption which is clearly inadequate for flat
ribbon-like polypeptides, we have in mind a more common
coarse-grained case of biopolymers, tightly twisted in the
secondary structure – or telephone cords. In such cases,
when the pitch of chain twisting about its local tangent
is smaller than the persistence length A, one may assume
the effective bending constant averaged over this helical
pitch and, thus, losing its anisotropy. In case of DNA,
this is justified by comparing the helical repeat distance
of about 3.5 nm with the bending stiffness of about 50 nm
[3,16].

We then introduce an additional twist stiffness, that
resists a local torque applied parallel to the polymer cen-
tral axis t(s). Our initial simplified model is therefore de-
scribed by the following Hamiltonian:

βH ≡ βHb + βHtw =
∫ L

0

(
A

2
κ2(s) +

C

2
ω2(s)

)
ds, (2)

where ω(s) is the local twist rate, A and C are the persis-
tence lengths for the chain bending and twisting degrees
of freedom, respectively. The macroscopic analogue of our
model would be an elastic tube of circular cross-section
or a semiflexible cylinder with a line drawn on the side
to keep track of the internal twisting degree of freedom,
cf. Figure 1. The model represented by equation (2) is
oversimplified. In addition to the bending anisotropy, it
does not take into account the twist-bend coupling terms,
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which have attracted attention and brought some interest-
ing new results recently [20,21]. All such omitted terms,
although having an effect on the chain conformation and
dynamics, do not change the essential physics of free en-
ergy balance between twist and bend. We, therefore, re-
strict the microscopic polymer description to the minimal
model (2).

2.1 Link, twist and writhe

By including the twist stiffness, the model polymer can re-
spond to externally applied torques. If the two ends of the
chain are clamped in order that they can neither move in
space nor rotate, the conserved quantity, besides the con-
strained end-to-end distance R, is the link number Lk [13].
The link number Lk is uniquely defined for a closed loop.
Consider for example an elastic tube with a line drawn on
the side closed into a loop. Both the central axis of the
tube and the line on the side are closed paths in space,
which in general cannot be disentangled. The link num-
ber gives the number of crossings that are necessary to
separate these two loops. For open segments, one can still
define a link number provided the two ends can neither
move in space nor rotate around their axis. One joins the
two ends by an imaginary fixed curve (e.g. a straight line)
and defines the link number of the open segment as the
link number of the total closed loop made up of the open
segment plus the closure [13], see also [22]. The link num-
ber defined in this way depends on the the choice of the
imaginary closure. Deformations of the open polymer seg-
ment conserve the link number, provided that the end
points of the open segment are clamped and the open seg-
ment never crosses the closing curve during deformation.

For closed loops and for open segments with clamped
ends, the link number is related to the internal twist Tw
and the writhe Wr [19,23,24]:

Lk = Tw+Wr, (3)

where Tw = 1
2π

∮
ω(s)ds is the total twist and Wr the

writhe of the curve. The writhe is a number solely de-
termined by the trajectory of the chain (or tube) axis
r = r(s) and independent of the internal twist ω(s). In
case of the open segment, the two end points should be
joined by a twistless segment, and Tw is given by a linear
integral along the chain: Tw = 1

2π

∫
ω(s)ds.

2.2 Helix vs. coil

Macroscopically, one can observe that a twisted rope forms
localised double-helical structures, the plectonemes, as one
increases the effective link number by rotating one end
around its central axis, keeping the other end fixed. We
expect a similar behaviour for microscopic systems, al-
though in this case the highly localised plectonemes stand
in competition with thermal fluctuations and chain con-
figurational entropy. The polymer will accommodate some
of its length in plectonemic superhelices, whereas the re-
maining part will be in a “disordered” coil state, similar

Fig. 2. A schematic view of the model showing the random
coil part (with a radius of gyration Rg proportional to the
end-to-end distance R) and two plectonemes. The model does
not account for the edge effects of plectonemes and thus for
the number of separate plectonemic superhelices. Hence con-
formations with different numbers of plectonemes may all be
represented by a conformation with only one plectoneme ab-
sorbing the same total arc length portion xL.

to a random walk of an ordinary polymer chain. Due to
thermal fluctuations, the contribution of the random coil
portions to the total writhe Wr can be set to zero sta-
tistically, since, for example, the coil segments have sta-
tistically equal access to states that are mirror images of
each other, which have writhe of opposite sign. In con-
trast, the coherently bent plectonemic segments will sig-
nificantly contribute to the writhe Wr. In a saddle point
approximation, the plectonemic segments all wind with
the same constant pitch rate p and radius r, defined in
Figure 1.

We are left with the following contributions to the total
link number Lk (note that Lk is generally not an additive
quantity that can be summed up over different chain seg-
ments; here, we adopt an approximation):

Lk =
1

2π

∫ L

0

ω(s)ds+Wrp, (4)

where Wrp = 2N sin γ = 2N p√
p2+r2

is the writhe of a

plectoneme, consisting of N full turns with pitch rate p,
pitch angle γ and winding radius r.

The winding radius of the plectoneme is determined
by short range forces acting between the two strands in
contact. Here we treat the radius of the plectoneme as a
known fixed parameter of the model, since we do not deal
with any interactions between distant segments. We as-
sume that the plectonemic portions of the polymer chain
take up a total fraction x of the polymer arc length, Fig-
ure 2. In this sense, the model does not account for the
number of separated plectonemes, assuming they all con-
tribute additively to the potential energy. Then the num-
ber of turns N in all plectonemic segments is given by:

N =
xL

4π
√
p2 + r2

· (5)
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The following partition function describes the system with
constrained end-to-end distance R and link number Lk:

Z ≡ e−βF (R,Lk) =
∑

states i

e−βH[i]δ(R −R[i]) δ(Lk − Lk[i]).

(6)

The simplified Hamiltonian in equation (2) decouples
bending and twisting energies. Moreover, the bending en-
ergy βHb resolves into two separate contributions: elastic
energy of the plectonemic fraction and the random walk
fraction:

βHb = βHrw + βHpl, (7)

with

βHpl = xL

(
A

2
r2

(r2 + p2)2

)
. (8)

For a given spatial path, the polymer will fluctuate
around a state that minimises the twist energy

βHtw =
∫ L

0

C

2
ω2(s)ds, (9)

which is given by ω(s) = ω = const. Therefore, in case of
the saddle point approximation ω = const., the topologi-
cal constraint (4) simplifies to:

Lk =
L

2π
ω +

xLp

2π(p2 + r2)
· (10)

As a result of these considerations, we obtain the sta-
tistical weight Z(R,Lk) as a sum over three microscopic
variables, the plectonemic fraction x, the twist rate ω and
the pitch rate of the plectoneme ω.

Z(R,Lk)=
∑
x,ω,p

e−βHtwe−βHplδ(Lk − Lk(x, ω, p))e−βF (R,x)

(11)

where e−βF (R,x) is the partial statistical weight of the
polymer segment of length (1−x)L that is accommodated
in the random walk portion of the chain, see Figure 2.

In our simplified picture neglecting the end effects, the
plectonemes cannot contribute to the end-to-end distance
R. Hence, the random coil portion of the chain spans all of
the constrained end-to-end distance R. The corresponding
statistical weight e−βF (R,x) is formally given by a path
integral, for which Thirumalai et al. [9] have obtained a
closed solution:

e−βF (R,x) =
∫
D[t(s)]e−

R
A
2 ( ∂t

∂s )2dsδ

(
R−

∫
t ds

)
≈M(x)

1
(1− ρ2)9/2

exp
(
− 9(1− x)L

8A(1− ρ2)

)
(12)

where the integrals running over the polymer length s are
taken over the fraction of chain that is accommodated
in the random walk segment, i.e. from 0 to (1− x)L. The

resulting expression (12) for the statistical weight includes
the normalisation factor, given by

M(x) =
4α7/2eα

π3/2(4α2 + 12α+ 15)
, with α =

9
8

(1− x)L
A

,

and ρ =
R

(1− x)L
·

Note that the normalisation constant M(x) cannot be
neglected in the main equation (11), as it is often the case
in ordinary studies of semiflexible polymers. This constant
is proportional to the conformation space available to the
random walk segment of length (1 − x)L, and, therefore,
it contributes to the free energy balance between the com-
peting plectonemic superhelical portion x and the disor-
dered chain portion (1 − x). If, for example, most of the
polymer forms a plectoneme, so x ≈ 1, the normalisation
constant N decreases dramatically, reflecting the loss of
entropy due to the confinement of most of the polymer in
the plectoneme.

After collecting all relevant terms and discarding unim-
portant constants, one obtains the following microscopic
effective Hamiltonian contributing to the Gibbs sum
in (11):

βHeff(R,Lk;x, p) =

xL
A

2
r2

(r2 + p2)2
+ L

C

2
ω2 +

9
2

log(1− ρ2)

+
9
8

(1− x)L
A

1
1− ρ2

− 3
2

log(1− x)

+
9
8
L

A
x+ log

(
4 +

12
α

+
15
α2

)
(13)

where the constraint equation (4) implies:

ω =
2πLk
L
− px

p2 + r2
· (14)

In a saddle-point approximation, the true free energy is
approximated by the minimum of the equation (13) given
by the conditions ∂Heff/∂p = 0 and ∂Heff/∂x = 0:

βF (R,Lk) = min
x,p

(βHeff(R,Lk;x, p)). (15)

3 Results and discussion

Throughout this section, when numerical results will be
presented, we will use the following values of chain param-
eters, that can be found in the literature [3,16]: bending
constant A = 50 nm, twist constant C = 75 nm. Further-
more, to be specific, we take the length of the polymer
to be L = 1000 nm and the hard core winding radius of
plectonemes to be r = 1 nm.

In the evaluation, we are left with two microscopic vari-
ables, the helical pitch rate p and the plectonemic fraction
x; both variables are integrated out by saddle point ap-
proximation. The condition ∂Heff/∂p = 0 yields a quartic
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Fig. 3. Consistency check for the approximate solution for
p given by equation (17) where the end-to-end distance was
R = 0 and the link number Lk = 10. The full line is the exact
numerical solution of equation (16) and the dashed one is the
approximation (17).

equation for p:

2πLkCp4 − xLCp3 + r2xLCp

− 2r2LAp− 2πr4LkC = 0. (16)

Assuming that the hard core radius of the polymer r is
small compared to all other length scales, we only respect
the two terms of the highest order in p and can solve the
remaining equation trivially:

p =
xL

2πLk
· (17)

Although we have looked at the dominant contribu-
tions in the case of small r, in making the approxima-
tion (17) we have neglected some terms containing the
dependency on x. One needs to check whether the ap-
proximation leading to (17) is valid. For this purpose, we
will later perform a check for self-consistency.

The approximation (17) for the plectonemic pitch rate
p yields the following effective Hamiltonian, now only de-
pending on x:

βH∗ =
9R2

16AL(1 +R/L− x)
+

9R2

16AL(1−R/L− x)

+
(2πLk)4r2[(2πLk)2Cr2 +AL2x]

2L((2πLk)2r2 + L2x2)2

+
9
2

log

(
1−

(
R

L(1− x)

)2
)
− 3

2
log (1− x)

+ log
(

1 +
80A2

27L2(1− x)2
+

8A
3L(1− x)

)
. (18)

Now the check for self-consistency of the approximation
for p made in equation (17) is to numerically calculate the
minimising value x∗ for equation (18) and, by inserting x∗,
to compare the exact numerical solution of equation (16)
with the approximate solution (17) (see Fig. 3).

We observe that, except for very low link numbers Lk,
the approximation is good. The divergence in p at low
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Fig. 4. Comparison of the full Hamiltonian βH∗ in equa-
tion (18) (full line), the simplified form βHapp in equation (19)
(dashed line) and the effect of omitting the 3rd term in equa-
tion (19), i.e. βHapp + 3/2 log(1− x). The end-to-end distance
and the link number are taken to be R = 10 and Lk = 10.

Lk describes a conformation when the polymer forms a
plectoneme of divergent helical pitch rate p, which in this
limit transforms into two parallel lines. However, the mis-
match between the numerical solution of equation (16)
and the approximation (17) at low link number does not
cause further problems in energy calculations, since the
plectonemic fraction x approaches 0 and thus reduces the
energy stored in the plectonemic fraction to zero as well.
The divergence in p, which is neglected by the approxima-
tion (17), only enhances this effect.

The function βH∗(x) is divergent at x = 1−R/L, due
to the 2nd term, reflecting the high free energy penalty
(due to entropy loss) as the two end points of the polymer
are joined by straight paths, while the remaining polymer
segment is entirely accommodated in a plectoneme. The
formation of the plectoneme is favoured by the 3rd term
which, on its own, would favour the maximal allowed x→
1. However, the 5th term of expression (18) with its weak
logarithmic divergence at x = 1 opposes this trend and
contributes significantly to the location of the non-trivial
minimum, in particular at small R: the divergence of the
2nd term, although stronger in the limiting case of an
extended chain, is too weak and the early onset of the
logarithmic divergence of the 5th term is essential (see
Fig. 4).

Although all five terms are relevant to determine the
exact location of the minimum, only three of them, namely
the 2nd, the simplified 3rd and the 5th terms, capture
the essential physical behaviour. We simplify the three
remaining terms further and obtain:

βHapp =
9R2

16AL(1−R/L− x)

+
1
2

(2πLk)4 Ar2

(xL)3
− 3

2
log(1− x). (19)

This approximation is valid at low link number, i.e. for
Lk� 1

2π (L/r) and Lk� 1
2π

√
A/C(L/r), and this seems

to be a very safe limit for long polymer chains. Note
that this approximation eliminates the dependency on the
twist constant C and the hard core radius r altogether,
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Fig. 5. The plectonemic fraction x against the end-to-end dis-
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Fig. 6. The plectonemic fraction x against the link number Lk
at a fixed end-to-end distance R∗ = 0, 0.1, 0.2 (running from
the full to the dash-dotted line); note how the plectonemic
fraction is reduced by stretching the chain ends.

reflecting the fact that the key competing factors are the
entropy of the random coil and the elastic bending energy
of the helical plectonemic portion of the polymer.

3.1 Free energy F(R, Lk)

From the simplified Hamiltonian (19), we can obtain nu-
merical results for the plectonemic fraction x∗ depending
on the end-to-end distance R and the link number Lk.
In Figure 5, we plot the plectonemic fraction x against
the end-to-end distance at various link numbers Lk. We
observe that on increasing the end-to-end distance R the
plectonemic fraction decreases as the superhelix is forced
to unwind. Also at low link number, the plectonemic frac-
tion x is small reflecting the fact that the gain in mechan-
ical energy by forming a plectoneme is lower than the cor-
responding entropy penalty; hence most of the polymer
is accommodated in the random coil. Figure 6 shows the
dependence of the plectonemic fraction x on the link num-
ber. At high link number, x saturates from below at the
maximally allowed value 1−R/L.

By inserting the saddle point value x∗ back into the
Hamiltonian Happ (19), we obtain an effective free energy
βF (R,Lk). Differentiating this energy βF with respect to
R yields the force f(R,Lk) acting between the end points

(
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Fig. 7. The force f(R,Lk) vs. the end-to-end distance R for
different link number Lk = 0, 5, 10, 20, 50 (running from the
full to the dotted line). The logarithmic scale of force allows
fitting all curves on the same plot, over the full range of R/L
variation.
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Fig. 8. Force f vs. end-to-end distance R∗ = R
L at very small

R∗, at Lk = 0, 2, 5, 10 and 20 (running from the full to the
dotted line).

of the polymer. This force is plotted in Figure 7 for var-
ious values of link number Lk. This result is very close
to experimental data of [1–3], which has also been high-
lighted in the work of [14,17]. We observe the following
behaviour:

– At low link number, the force is linear in the end-
to-end distance R at low R, as expected from clas-
sical entropic polymer models. However, the effective
spring constant depends on the link number: the poly-
mer becomes tougher to stretch as the link number
is increased. Figure 8 shows this by zooming on the
region of very small R/L.

– At a link number of about 30, one can start observing
three distinct regimes of the force: a linear extension
regime at low R, as before at low Lk, a hardening
of the polymer and finally an almost constant force
plateau before the onset of the final divergence at R =
L (Figs. 7 and 9).

– We observe in Figure 5 that the plectonemic fraction
x does not depend on R at very low R to the first ap-
proximation (the curves approach the vertical axis as
x ≈ a−bR2, confirmed by series expansion of Eq. (19)).
This regime is fairly extended at low link number (see
dotted line in Fig. 5), but is reduced dramatically
as link number is increased in such a way that it is
not visible on the scale of Figure 5. This regime of
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k

III

II

I

Fig. 10. Different regions of chain parameters where approx-
imate expressions for the force f(R,Lk) have been found.
The full line is at Lk = Lk∗ and the dashed line follows
Lk = Lk∗ (L/R)1/4. The dash-dotted “phase border” Lk �
1
2
Lk∗(L/R)2 limits the regions I and II, where the plectonemic

fraction x can be taken as independent of R, and the extension
force is Hookean.

x ≈ const.(Lk) is related to the region where the force
is linear in R (Fig. 9). As the link number is increased,
the regime where the force is linear in R decreases to
the same extent.

Approximate expressions for various characteristic re-
gimes can be obtained using simple perturbation tech-
niques. We will frequently use the following non-dimen-
sional parameter, which will outline boundaries between
the asymptotic regimes:

Lk∗ =
1

2π

(
L3

Ar2

)1/4

.

For the particular choice of chain characteristics adopted
in plotting the results, this number is Lk∗ ≈ 10. The dif-
ferent regions of parameters are shown diagrammatically
in the “phase diagram” Figure 10.

3.2 Low link number Lk, small end-to-end distance
R(I)

In a first approximation, the plectonemic fraction x does
not depend on R at low R values (see dotted curve in
Fig. 5), if Lk� 1

2Lk
∗(L/R)2. However it depends linearly

on the link number Lk (see full curve in Fig. 6). Hence the
saddle point value of x satisfies the equation

∂βHapp

∂x
|R=0 = 0 , or x4 − d x+ d = 0

with d = (2πLk)4Ar
2

L3
=
(
Lk

Lk∗

)4

,

giving x ≈ 2πLk
(
r2A/L3

)1/4 = Lk/Lk∗ at small link
number, i.e. for Lk� Lk∗, and small end-to-end distance,
i.e. R/L� 1 and R/L�

√
Lk∗/2Lk.

Inserting this result into βHapp (19) and expanding for
low R, we obtain for the force:

f =
9

8β
R

AL

1
1− Lk/Lk∗ , (20)

a “classical” Hookean expression with the spring constant
modified by the link number.

3.3 High link number Lk, small end-to-end distance
R(II)

As the discussion in previous sections reveals, the region
of linear force is very small, reflecting the fact that the
regime where x is independent of R at high Lk, is very
small too (not visible in Fig. 5, but a more detailed plot
would show it clearly). In this regime and at high link
number, Lk � Lk∗, the plectonemic fraction x can be
approximated by a constant value

x = 1−
(
Lk∗

Lk

)4

,

provided thatR/L� (Lk∗/Lk)4. After an evaluation pro-
cedure, similar to the previous case, one obtains the fol-
lowing expression for the force:

f =
(
Lk

Lk∗

)4 9
8β

R

AL
· (21)

In this case, the linear Hookean force is dominated by the
high link number stored in the chain.

3.4 High link number Lk, intermediate R(III)

To find an approximate expression of the plateau regime
as shown in Figure 9, we can approximate the plectonemic
fraction x at non-infinitesimal R/L by a linear decrease

x = 1− R

L
−
√

3
8

1
(2πLk)2

LR

Ar
,
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which is valid provided that Lk� Lk∗, A� L and(
Lk∗

Lk

)4

� R

L
� 1.

One finds the following expression for the force:

f =
3

2β

(
Lk

Lk∗

)2 1
L

[(
Lk

Lk∗

)2

+
√

6
2

√
L

A

](
1 + 4

R

L

)

≈ 3
2β

(
Lk

Lk∗

)4 1
L

(
1 + 4

R

L

)
for Lk � 1

2π
L√
Ar
· (22)

4 Conclusion

In this article, we have shown theoretical evidence for the
formation of double-helical plectonemic structures in a
twist-storing polymer due to the competition of elastic en-
ergy and entropic free energy. This effect leads to a novel
macroscopic force-extension behaviour, for which we have
found closed analytical expressions in important limiting
cases.
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